Introduction to Calculus Gradients of Curves - Power Rule for Differentiation

Worksheet 3

Exercise 1

Given the curve $y=x^{2}-4$

1. Find an expression for $\frac{d y}{d x}$.
2. Calculate the gradient of the curve at the point $A(-3,5)$.
3. Calculate the gradient of the curve at the point $B(1,-3)$.

Exercise 2

Given the curve $y=x+\frac{1}{x}$

1. State this function's domain.
2. Find an expression for $\frac{d y}{d x}$.
3. Calculate the gradient of the curve at the point along its length with x-coordinate, $x=-1$.

Exercise 3

Given the curve defined by:
$y=2 x^{2}-4 x+2$

1. Find an expression for $\frac{d y}{d x}$.
2. Calculate the y-coordinate of the point along its length with x coordinate $x=3$, call this point P.
3. Calculate the gradient of the curve at point P.

Exercise 4

Given the curve defined by:
$y=3 x-\frac{4}{x^{2}}$

1. Find an expression for $\frac{d y}{d x}$.
2. Calculate the gradient of the curve at the point along its length with x-coordinate $x=-1$.

3. Calculate the gradient of the curve at the point along its length with x-coordinate $x=2$.
